Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Osong Public Health and Research Perspectives ; (6): 260-263, 2017.
Article in English | WPRIM | ID: wpr-650996

ABSTRACT

OBJECTIVES: Aflatoxin M1 (AFM1)-contaminated dairy products pose serious human health risks, causing liver and renal failure if consumed. They are also related to decreased milk and egg production in infected animals. This study investigated the AFM1 contamination levels in cheeses sold in Isfahan province, Iran, by enzyme-linked immunosorbent assay (ELISA). METHODS: A total of 100 white cheese samples were randomly collected from supermarkets in Isfahan province and after extraction using dichloromethane were prepared for the ELISA. RESULTS: Of the 100 samples, 52 (52%) were contaminated by AFM1, at levels ranging from 50.2 to 424.4 ng/kg. The remaining 48% of the samples had undetectable AFM1 levels (< 50 ng/kg). Based on the standard limit set by the European Commission and Iran, 8% (8/100) of the AFM1-positive samples (with concentrations between 250.2 and 424.4 ng/kg) had levels higher than the permissible value of 250 ng/kg. CONCLUSION: Although the percentage of cheese samples in Isfahan province with AFM1 levels exceeding the national permissible limit was low, the examination of cheeses and the milk used for their production is nevertheless important for ensuring public health. Furthermore, optimum storage conditions of animal feed should be ensured, and livestock nutrition must be monitored for the presence of AFM1 and other aflatoxins.


Subject(s)
Animals , Humans , Aflatoxin M1 , Aflatoxins , Animal Feed , Cheese , Dairy Products , Enzyme-Linked Immunosorbent Assay , Iran , Liver , Livestock , Methylene Chloride , Milk , Ovum , Public Health , Renal Insufficiency
2.
Journal of Audiology & Otology ; : 131-138, 2016.
Article in English | WPRIM | ID: wpr-195560

ABSTRACT

miRNAs are essential factors of an extensively conserved post-transcriptional process controlling gene expression at mRNA level. Varoius biological processes such as growth and differentiation are regulated by miRNAs. Web of Science and PubMed databases were searched using the Endnote software for the publications about the role miRNA-183 family in inner ear: hair cell development and deafness published from 2000 to 2016. A triplet of these miRNAs particularly the miR-183 family is highly expressed in vertebrate hair cells, as with some of the peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, while knockdown decreases the number of hair cell. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cell in the eye, nose and inner ear. In the inner ear, mechanosensory hair cells have a robust expression level. Despite much similarity of these miRs sequences, small differences lead to distinct targeting of messenger RNAs targets. In the near future, miRNAs are likely to be explored as potential therapeutic agents to repair or regenerate hair cells, cell reprogramming and regenerative medicine applications in animal models because they can simultaneously down-regulate dozens or even hundreds of transcripts.


Subject(s)
Animals , Humans , Mice , Biological Phenomena , Cellular Reprogramming , Deafness , Ear, Inner , Gene Expression , Hair , Hearing Loss , MicroRNAs , Models, Animal , Nose , Point Mutation , Regenerative Medicine , RNA, Messenger , Triplets , Vertebrates , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL